SCANNING VOL. 22, 218-226 (2000)
© FAMS, Inc.

Received: January 10, 2000
Accepted: April 20, 2000

Three-Dimensional Microscopy Data Exploration by Interactive Volume

Visualization

SHIAOFEN FANG, Y1 DAI, FREDERICK MYERS, MIHRAN TUCERYAN, KENNETH DUNN*

Department of Computer and Information Science, Indiana University Purdue University Indianapolis; *Department of
Medicine, Division of Nephrology, School of Medicine, Indiana University, Indianapolis, Indiana, USA

Summary: This paper presents a new volume visualization
approach for three-dimensional (3-D) interactive micro-
scopy data exploration. Because of their unique image
characteristics, 3-D microscopy data are often not able to
be visualized effectively by conventional volume visual-
ization techniques. In our approach, microscopy visual-
ization is carried out in an interactive data exploration
environment, based on a combination of interactive volume
rendering techniques and image-based transfer function
design methods. Interactive volume rendering is achieved
by using two-dimensional (2-D) texture mapping in a
Shear-Warp volume rendering algorithm. Image process-
ing techniques are employed and integrated into the
rendering pipeline for the definition and searching of appro-
priate transfer functions that best reflect the user’s visual-
ization intentions. These techniques have been imple-
mented successfully in a prototype visualization system on
low-end and middle-range SGI desktop workstations. Since
only 2-D texture mapping is required, the system can also
be easily ported to PC platforms.

Key words: three-dimensional microscopy, visualization,
volume rendering, texture mapping, image processing

PACS: 07.05 Rm, 07.05.Pj

Introduction

In the past 20 years, microscopy has come to play an
increasingly important role in the study of cell biology. The
advances in biochemistry and molecular biology have gen-
erated an increased appreciation of the cellular organiza-
tion of the biochemical components of a cell. Although
advances in confocal microscopy and image deconvolution

Address for reprints:

Shiaofen Fang

Department of Computer and Information Science
Indiana University Purdue University Indianapolis
723 West Michigan Street, SL 280

Indianapolis, IN 46202, USA

email: sfang@cs.iupui.edu

have made it feasible to collect high-resolution (Dunn et
al. 1994, Shaw 1995), three-dimensional (3-D) image vol-
umes of thick samples such as epithelial cells, application
of this technology to 3-D imaging is still in its infancy.
Indeed, the proliferation of 3-D microscopy in cell biology
has generated vast amounts of image data that have not
been sufficiently explored and analyzed.

The rapid advances in computer graphics and visual-
ization, in particular volume visualization, have provided
a great potential for the visualization of 3-D microscopy
images. Volume visualization is a new 3-D computer graph-
ics technique that is concerned with the abstraction, inter-
pretation, rendering, and manipulation of large volume
datasets. Volume-rendering algorithms, for instance, can
directly display the entire volume dataset through semi-
transparent images and allow the viewer to peer inside the
internal structures of the image volume for truly 3-D data
viewing and analysis. Although volume visualization meth-
ods and tools have been used in many scientific and med-
ical applications, such as visual simulations and computed
tomography/magnetic resonance imaging (CT/MRI), its
applications in 3-D microscopy are limited and largely
ineffective. This is mainly because current volume visual-
ization techniques are mostly designed for CT/MRI types
of images and are poorly suited for 3-D microscopy appli-
cations. Several unique characteristics of microscopy data
pose serious challenges to conventional visualization tech-
niques.

First, fluorescently labeled samples characteristically
have low signal levels, sometimes consisting of a single
photon, so that microscopy images are typically much
noisier than CT or MRI images. Furthermore, since exci-
tation of fluorescence also destroys fluorophores through
photobleaching, the signal-to-noise ratio decreases with the
collection of each focal plane of an image volume. Con-
sequently, microscopy image volumes are usually very
sensitive to small changes in rendering parameters, such as
the rendering transfer functions which map image intensity
values to colors, opacities, or shading parameters. Thus,
ordinary volume visualization algorithms frequently fail to
capture the delicate structures present in many cellular
objects. Second, structures in the microscopic scale typi-
cally show higher complexity than those of the anatomic
organs in CT or MRI images. This is particularly true in

S. Fang et al.: 3-D microscopy data exploration by interactive volume visualization 219

multiparameter images, in which several different proteins
will be imaged simultaneously, each in a specific color of
fluorescence. A third problem is that the structures of the
objects to be examined are often partially or entirely
unknown. This leads to the strong need for interactive nav-
igation and searching capabilities in both the spatial dimen-
sions and the transfer function space.

Due to these special characteristics, 3-D microscopy
visualization is best performed in a data exploration envi-
ronment in which users can interactively manipulate,
search, and render 3-D microscopy images for their indi-
vidual visualization goals. Two key technical requirements
for such a visualization environment are interactivity and
transfer function design.

Data exploration is intrinsically a continuous and inter-
active process. Although many surface rendering and vol-
ume rendering algorithms have been developed (Lacroute
and Levoy 1994; Levoy 1988, 1990; Lorensen and Cline
1987; Upson and Keeler 1988; Westover 1990), they have
not been able to provide interactive rendering speed to
support interactive data exploration. In fact, interactive
volume visualization can currently only be obtained using
either supercomputers (Parker et al. 1988) or special hard-
ware systems, which are not available on common desk-
top computers. The most popular hardware solution is
using 3-D texture mapping hardware which is only avail-
able on high-end graphics workstations such as SGI’s Onyx
systems (Mountain View, Calif.) (Cabral et al. 1994, SGI
Technical Publications 1998). A recently released hardware
chip, VolumePro, by Mitsubishi (Irvine, Calif.) also pro-
vides real-time volume rendering, but with considerable
additional hardware cost. Furthermore, VolumePro does not
support perspective projection, which is essential in data
exploration applications. These limitations severely restrict
the usability of volume visualization in 3-D microscopy.
Thus, our first goal is to develop a low-cost technique for
interactive volume rendering that uses only existing hard-
ware features on common desktop computers.

Another important component of data exploration is the
searching for the right transfer functions that best reflect
the users’ visualization intentions. The transfer function
design problem is particularly important and difficult with
noisy and unfamiliar data sets, but has not received suffi-
cient research attention. Most current visualization systems
employ a trial-and-error approach, which is extremely dif-
ficult and time consuming for microscopy data. More
important, visualization results obtained this way depend
largely on the user’s experience and “luck,” and can lead
to confusing, misleading, and dubious data interpretations.
A previous effort in improving the transfer function search-
ing is rather limited. One approach is the evolution-based
inverse design approach (He et al. 1996, Marks et al. 1997),
which uses a stochastic search technique to generate many
image samples based on an initial population of predefined
transfer functions, and then improves the samples based on
the user’s selections of the sample images at each evolu-
tion step. Although this approach provides some level of

heuristics for transfer function searching, it is still a very
time-consuming process and does not support complicated
or procedural transfer functions that cannot be represented
by the predefined function combinations. Another related
work (Kindlmann and Durkin 1998) uses gradient-based
edge detection methods to render volumes in which regions
of interest are the boundaries between different materials.
The image-based transfer function design approach in this
paper is based on a more systematic use of 3-D image pro-
cessing techniques (Fang et al. 1998) of which the approach
in Kindlmann and Durkin (1998) is a special case. In our
approach, image processing procedures are integrated into
the visualization pipeline so that the users can interac-
tively adjust the parameters of the image processing oper-
ators for desired and predictable results.

Methods

Interactive 3-D microscopy data exploration can be
achieved through a combination of interactive volume ren-
dering and intuitive transfer function design. Technical
details of this approach will be given in this section. These
include a new interactive volume rendering algorithm using
two-dimensional (2-D) texture mapping and a transfer
function design method based on image processing oper-
ations.

Interactive Volume Rendering by Two-Dimensional Tex-
ture Mapping

This algorithm applies 2-D texture mapping in a shear-
warp based volume rendering process to achieve interactive
speed. There are two important advantages in using 2-D tex-
ture mapping over other software- and hardware-based
methods. First, 2-D texture mapping is normally imple-
mented in hardware, and therefore is faster than equivalent
operations using CPU computations. Second, unlike 3-D
texture mapping hardware that is only available on selected
high-end graphics workstations, hardware-implemented 2-
D texture mapping is widely available and is usually a stan-
dard feature on most desktop workstations and personal
computers. Combining 2-D texture mapping and a shear-
warp factorization technique, we are able to achieve inter-
active volume rendering without special hardware require-
ments.

Volume rendering using shear-warp factorization was
first proposed in Cameron and Undrill (1992) and later opti-
mized in Lacroute and Levoy (1994). Although the algo-
rithm given in Lacroute and Levoy (1994) is one of the
fastest, it still does not provide interactive rendering per-
formance. More important, the algorithm carries two lim-
itations that make it unsuitable for data exploration appli-
cations: (1) the algorithm slows down considerably when
using perspective projection, and (2) it requires an expen-
sive preprocessing step for data classification with every
change of the transfer function. Unfortunately, both the per-

220 Scanning Vol. 22, 3 (2000)

spective viewing and the continuous change of transfer
function are crucial features in data exploration.

Shear-warp algorithm is based on the shear-warp fac-
torization of the viewing matrix:

M=P-§S-W

where P is a permutation matrix that transposes the coor-
dinate system to allow the z-axis to be the principal view-
ing axis, S is a shearing transformation, and W is a warp-
ing matrix that is computed by W= S-1- P-1. M. The basic
steps of the shear-warp algorithm are the following: the vol-
ume data set is first transformed to a sheared object space
by translating, scaling, and resampling the slices of the vol-
ume; these slices are then composited together in a front-
to-back order, which essentially projects the slices onto an
intermediate image in the sheared object space. A warping
operation is finally applied to this intermediate image to
generate the correct image using the warping matrix W.
This process is illustrated (upper branch) in Figure 1.
The main computational cost in this process is the resam-
pling of the slices in the sheared object space and the sub-
sequent composition of the slices. For perspective viewing,
this can be particularly expensive since all slices are scaled
differently and thus need to be resampled differently. Our
approach considers a slice to have two components: the
image component, which is the 2-D image of the slice
from the original data set, and the polygon component,
which represents the rectangular geometry of the slice.
Every time the polygon is geometrically transformed (e.g.,
translation and scaling) an image resampling needs to be
done for the rasterization of the slice in the frame buffer.
This process can, however, be accelerated by graphics
hardware if the image of each slice is separately defined as
a 2-D texture and mapped to its polygon when it is drawn
to the frame buffer by the graphics subsystem. Since the

Shearing & scaling

Projecting
& compositing

Resampled
, image slices

Original shear-warp v
algorithm :

/

Warping\\“\ \

Shearing & scaling Texture

Shear-warpwith TR images
\ texture mapping — Texture
mapping
Image plane Draw polygons <---
with blending
& texture mapping .

v N
Warping . / Polygons
\

FiG. 1 Shear-warp algorithm: Shear-warp volume rendering by
resampling and by 2-D texture mapping.

texture mapping process involves the resampling compu-
tation (by hardware), this is a much faster operation than
a CPU-only solution, as shown in Figure 1.

As in the original shear-warp algorithm (Lacroute and
Levoy 1994), three sets of the slices of the volume need to
be defined for the three different major viewing axes. The
polygon of each slice can be generated on-the-fly during
rendering, but its texture image needs to be predefined
and stored in the system for fast texture mapping. Since
both parallel and perspective viewings of polygons are
handled automatically by the graphics subsystem, there is
virtually no speed difference between parallel and per-
spective projections. Unlike the algorithm given in Lacroute
and Levoy (1994), where special data structures (e.g., run-
length encoding) need to be reconstructed every time the
transfer function is modified, the new algorithm extracts the
texture images directly from the original data set, inde-
pendent of the transfer functions, and therefore does not
require extra preprocessing when editing the transfer func-
tions. Finally, the warping step can also be conveniently
carried out by 2-D texture mapping.

This algorithm, however, has two drawbacks.

Memory requirements: Since no data compression is
employed for the three sets of texture images, memory
requirements are large. For instance, a 2563 volume would
require over 48 MB memory. A similar amount of mem-
ory is required for typical microscopy data sets of size 512
x 512 x 64. However, since memory price has been drop-
ping at a faster pace than other hardware components, this
may not be a major concern for most users.

Lack of shading: Two-dimensional texture mapping can
not efficiently support shading that displays more realistic
surface features. Thus, our algorithm does not generate
shaded images, which may result in a loss of quality for sur-
face-rich data sets. However, this does not appear to be a
major problem with microscopy data sets in which surfaces
are normally not well defined due to the nature of floures-
cently labeled samples.

Image-Based Transfer Function Design

The need for transfer function design comes from the
dynamic and often subjective visualization goals and
requirements in microscopy data exploration, where the
users need to search and manipulate the transfer functions
interactively in the visualization process to view different
types of substructures, surfaces, and frequencies with dif-
ferent visual attributes. Thus, an intuitive and efficient trans-
fer function model is essential for this type of problem.

Transfer functions: A transfer function is a function or
a procedure defined over the intensity-spatial domain of a
volume data set. It computes a new intensity value for
each sample point in the volume space during rendering.
It can also be applied to the voxel points of the entire vol-
ume to reconstruct a new volume. The intensity values
generated from a transfer function can be further mapped
to color and opacity values using a color look-up table, rep-

S. Fang et al.: 3-D microscopy data exploration by interactive volume visualization 221

resenting a piecewise linear mapping for each color/opac-
ity component. We call this step the coloring step. Since an
intensity volume is essentially a 3-D intensity image, a
transfer function can be naturally considered to be an
image-processing problem. In this model, a transfer func-
tion, F: v—v, is defined as a sequence of mappings:

F=fofimoohoh

where V is the volume data space, and f;: v—V correspond
to a sequence of image processing procedures with ad-
justable parameters. This sequence and its parameter set
uniquely define one transfer function in the transfer func-
tion space. For computational simplicity, f; is restricted to
be one of the following two types of mappings:

1. Intensity table. It is an intensity-to-intensity look-up
table representing a piecewise linear function over the
volume’s intensity field.

2. Neighborhood function. It is a function computed
from the intensity values in an m X m X m neighbor-
hood of a given voxel, where the neighborhood size,
m, is an adjustable parameter of the transfer function.
A median filter (Rosenfeld and Kak 1982), for in-
stance, can be considered as a neighborhood function.
A more typical example is the 3-D spatial convolution,
as a 3-D linear filter of a volume V with an m X m X m
mask 7:

m

fuy.2)= D Tlijk]-Vix+iy+ j.z+k]

i, ;‘k:,g

Some higher order image processing operations, such as
dilation/erosion and anisotropic diffusion (Perona and

‘ Parameter modification H Coloring and rendering

‘ Parameter modification Coloring and rendering
¥
(w0)~ Cstos>—{ 1]

(©

Malik 1990), cannot be directly represented as a neigh-
borhood function; but these operations are normally applied
in some precomputation processes for the definitions of
simpler functions.

Integrating transfer functions into rendering: Volume
rendering using this transfer function model requires the
integration of image processing procedures into the ren-
dering pipeline. This enables the interactive data explo-
ration through transfer function manipulation. Different
integration approaches need to be used with different types
of volume rendering algorithms. These include point-based
approach, volume-based approach, and slice-based ap-
proach (Fig. 2).

Point based approach: This approach can be applied
when point is the basic data element processed through the
rendering pipeline. Raycasting algorithms are the most
typical of this kind. Essentially, every access to an inten-
sity value during rendering will directly go through the
computations of all the image processing procedures, as
shown in Figure 2a. The main advantage of this approach
is that it only computes the image processing operations on
points that are actually used by the rendering algorithm, that
is, the visible points. Since the number of sample points
used for rendering is normally much smaller (<10% in our
experience) than the total number of voxels in the volume,
this approach is more efficient than applying the transfer
function to the entire volume, particularly when frequent
changes of the transfer functions are necessary.

Applying intensity tables to points is very straightfor-
ward using color and opacity look-up tables, often in hard-
ware (e.g., in OpenGL). The integration of neighborhood
functions are, however, more costly. A straightforward
approach is to make recursive procedural calls to the neigh-
borhood functions to compute the image processing results
dynamically for individual sample points when they are
accessed by the rendering algorithm. One problem with this

‘ Parameter modification Coloring and rendering

[
~() OO

(b)

’ Parameter modification F;

Coloring and rendering

FiG. 2 Integrating image processing into the rendering pipeline: (a) Point-based approach, (b) volume-based approach, (c) slice-based

approach, (d) 2-D texture-based approach.

222 Scanning Vol. 22, 3 (2000)

process, however, is the potentially repeated computation
with multiple neighborhood functions. Since each voxel
can fall into the neighborhoods of several other voxels, it
may therefore be accessed (and computed) multiple times
when more than one neighborhood functions exist in a
transfer function. When the number of neighborhood func-
tions in a sequence is large, such overhead can be signifi-
cant. Fortunately, the problem can be alleviated by apply-
ing some buffering mechanism to store the intermediate
results of each computed sample point for possible repeat
accesses. For instance, a buffer can be used for each neigh-
borhood function to store the results of all sample points
going through this function. This way, the overhead can be
partially or entirely eliminated.

Volume-based approach: In this approach, the neigh-
borhood function procedures in the transfer function are
applied to the entire volume to generate a sequence of
intermediate volumes, with the final volume passed to the
coloring step, as shown in Figure 2b. This approach is
suitable for rendering algorithms that do not have total
control and access to individual voxels of the data set (or
are inefficient to do so). The most typical case is the vol-
ume-rendering approach using 3-D texture mapping. When
the 3-D texture mapping is implemented in hardware, the
transfer function computation cannot be easily inserted
into the texture mapping pipeline. In this case, applying the
transfer function at the volume level is more practical and
efficient. Since 3-D texture mapping-based algorithms do
not normally have early termination control (Levoy 1990)
for avoiding computing points that no longer contribute to
the image, a point-based approach does not really have a
clear advantage in this case. The implementation of this
approach is also simpler since the image processing and
volume rendering are decoupled. For instance, special ren-
dering hardware, such as the VolumePro chip by Mitsubishi
may be used following the transfer function computation.

Slice-based approach: This approach applies the trans-
fer function to one slice of the volume at a time, as shown
in Figure 2c; it is suitable for algorithms that access the vol-
ume in a slice-by-slice order. Our 2-D texture mapping-
based shear-warp algorithm belongs to this category. Some
3-D texture mapping-based algorithms can also be classi-
fied into this category. For instance, in the algorithm given
in Cabral et al. (1994) images are formed by the texture
mapping and blending of Z-planes, which are essentially
resampled 2-D slices that are perpendicular to the view-
ing direction. Compared with the volume-based approach,
the slice-based approach uses less memory and is also
more efficient and flexible when the algorithm needs
dynamic determination of the sampling resolutions of the
slices and the number of slices to be sampled based on run-
time conditions; that is, only the samples that are actually
used by the rendering procedure are computed by the
transfer function.

In practice, once a transfer function is defined, its ren-
dering result often needs to be examined from many dif-
ferent angles before a change is made to the transfer func-

tion. Thus, it is important to be able to reuse the transfer
function results for a sequence of renderings. This can be
done naturally with our 2-D texture mapping-based shear-
warp algorithm. Essentially, each slice is computed by the
transfer function before it is saved as a 2-D texture. Thus,
the rendering process only communicates with the 2-D
texture images generated from the slices, and each change
of the transfer function requires a reloading of the 2-D tex-
ture images. This process is shown in Figure 2d. Hardware
acceleration is also possible for image processing compu-
tation. In our implementation, the ImageVision system on
SGI workstations is used to compute chains of image pro-
cessing operations. Since ImageVision takes advantage of
the system’s graphics hardware whenever possible, it is
usually faster than pure software implementation. Other
real-time image processing solutions are also available
such as the DSP-based image processing chips by Texas
Instruments (Dallas, Tex.).

Image enhancement for data filtering: In this image-
based transfer function model, we mainly focus on two
types of operations: image enhancement and boundary
detection. The goal of image enhancement is to improve the
quality of the 3-D image volume for better visual appear-
ance, based on the user’s visualization goals; that is, it is
basically a data filtering mechanism. Two types of image
enhancement techniques are commonly used: point en-
hancement and spatial enhancement.

A point enhancement operation applies some function
to each intensity value individually to generate a new value.
Since the result of a point enhancement operation only
depends on the intensity value of the point to which it is
applied, the corresponding intensity mapping can be rep-
resented as an intensity table in our transfer function model.
The most common point enhancement operation is inten-
sity modifications, in which the intensity curve of the input
volume is altered in certain intensity intervals to increase
or reduce the exposure of the corresponding regions. Sim-
ilar modification scan also be applied to the histogram
curve (e.g., histogram equalization). Although the para-
meters of such operations (e.g., the intensity intervals) can
be defined and adjusted directly by the users, they more
likely will come from the output of some other image pro-
cessing procedures, such as boundary detections, in a visu-
alization process.

A spatial enhancement operation derives the new inten-
sity value of a given point from its neighborhood points,
that is, the result is neighborhood dependent. Therefore,
spatial enhancement operations can only be represented as
neighborhood functions in our transfer function model. In
general, spatial operations can be classified into smooth-
ing and sharpening operations.

Smoothing operations are primarily used to remove
image noise. We sometimes also want to remove very
small feature details for better presentation of the larger fea-
tures. One example is the median filter that returns the
median intensity value in an m X m X m neighborhood.
However, more typical smoothing operators are often rep-

S. Fang et al.: 3-D microscopy data exploration by interactive volume visualization 223

resented as 3-D convolutions with spatial lowpass masks
which filter out high-frequency image components. The
mask represents a weighted average of the intensity values
in a m X m X m neighborhood of each point in the volume.
In addition to the mask size m, several other parameters
may also be defined to adjust the level of smoothing and
blurring by manipulating the weights for the averaging. One
example is the 3-D Gaussian smoothing defined by a
Gaussian mask with parameters 0, 0,, 0; € (0, +o0):

_(L+L+L]
.. 207 20} 207
Tli,jk]|=e 7 7 °

Sharpening operations aim to enhance geometric fea-
tures by emphasizing the high-frequency components of the
images. This can be achieved by applying a highpass fil-
ter, such as the Laplacian-type filter

f(x,y.2)=g(x,y,2)— V’g(x,y,2)

to the image volume. Another useful operation is the
unsharp masking that blends the low-frequency component
and high-frequency component of an image volume, where
the weights of the linear combination are adjustable para-
meters and represent the level of sharpening it generates.
Again, most of these highpass filters can be represented by
convolution masks as neighborhood functions.

An example is shown in Figure 3 where the structure in
an actin filament volume is visualized through enhance-
ment operations.

Boundary detection for surface rendering: Boundary
detection operation finds the surface boundary voxels to
derive the appropriate transfer function or thresholds for
surface rendering. Most 2-D edge detection algorithms
can be extended for 3-D boundary detection. Many of
these algorithms employ some convolution masks to com-

pute the discrete approximations of some differential oper-
ators to measure the rates of changes of the intensity field
(gradients), and then classify surface boundary voxels
based on a magnitude thresholding of the gradient values.
More sophisticated edge detection algorithms have also
been developed in Computer Vision (Perona and Malik
1990).

Iso-surface-based approach: Iso-surface rendering
requires predefined iso-values to identify the iso-surfaces.
Unfortunately, these iso-values are often not known in
advance. Using the image-based approach, we can apply
an edge detection operator to derive these iso-values auto-
matically for iso-surface rendering. Note that extraction of
the iso-surfaces (Lorensen and Cline 1987) is not neces-
sarily needed. For instance, we can define a transfer func-
tion through intensity modification that renders only a
layer of the surface voxels, defined by some narrow inten-
sity intervals surrounding these iso-values.

To derive the iso-values, a histogram of all the bound-
ary voxels from the boundary detection operator is first gen-
erated. The intensity values at which the histogram reaches
local maxima can then be used as the surface iso-values.
A smoothing operation (e.g., Gaussian smoothing) may
need to be applied to the histogram first to remove noises.
It should be mentioned that, with this approach, both the
boundary detection and histogram analysis are precompu-
tations of the actual rendering process. It is, therefore, pos-
sible to apply higher order edge detection operations in this
process. By setting different scales of parameters in the
boundary detection process, a set of multiscale iso-values
can also be precomputed, and then used to define a set of
multiscale transfer functions (as simple intensity tables) for
different levels of surface rendering in data exploration.

Dynamic boundary detection-based approach: A second
approach in using boundary detection for surface render-
ing is the direct application of a boundary detection oper-
ation to each sample point when it is accessed by the ren-
dering algorithm. This allows the rendering algorithm to

(@) (b)

(©

FiG. 3 A fluorescently labeled actin filaments volume: (a) Volume rendering by a linear ramp transfer function, (b) Laplacian masking fol-
lowed by unsharp masking with y=3, (c) Laplacian masking followed by unsharp masking with y=10.

224 Scanning Vol. 22, 3 (2000)

determine dynamically whether or not a sample point
belongs to a surface boundary for appropriate rendering
actions. With this approach, only simple boundary detec-
tion methods (e.g., convolution mask-based detectors)
ought to be applied for speed reasons. This approach is par-
ticularly useful for surfaces that cannot be simply defined
as iso-surfaces. One example is the photobleaching effect
in fluorescence microscopy, where the entire depth of the
sample is illuminated with light that both excites and
destroys fluorophores through photo-oxidation. When one
attempts to collect serial optical sections of a sample vol-
ume, the images are characterized by an increase in the
amount of photobleaching of each sequential plane, such
that the same material may have different intensity values
in different slices. In these cases, the boundaries may need
to be identified using more sophisticated edge detection
methods, and the data gradient is a more effective measure
of surfaces than the iso-value. As a very simple example,
the magnitudes of gradients may be proportionally mapped
to the opacity values in the opacity transfer function to

emphasize high-gradient regions for surface rendering
effect. A gradient thresholding may also be used to render
only the high gradient voxels. In general, this approach
requires the intensity mappings for transfer function defi-
nition to be represented as neighborhood functions and is
therefore more expensive than the iso-surface-based
approach.

An example is shown in Figure 4 where the surfaces in
a Golgi Complex volume are visualized through both iso-
surface rendering and dynamic boundary detection. The
iso-value is determined using the histogram curve of the
boundary points.

Results

Using the techniques described in this paper, we have
developed an integrated system, called IVIE, for the inter-
active visualization and imaging of volume data sets.
Although IVIE is designed for general volume data, it is

FiG.4 Surface rendering of a Golgi complex: (a) Volume rendering by a linear ramp; (b) the histogram of boundary points; (c) iso-surface ren-
dering with an iso-value 87, obtained from (b); (d) surface rendering by dynamic boundary detection.

S. Fang et al.: 3-D microscopy data exploration by interactive volume visualization 225

particularly suitable for noisy and complex data sets, such
as 3-D microscopy data volumes, that require sophisti-
cated transfer functions and interactive data exploration.
The system is written in C++ and OpenGL 1.1, and is cur-
rently implemented on SGI OCTANE and O2 workstations.
Since only 2-D texture mapping hardware is used, it can
be easily ported to PC platforms. Interactive volume ren-
dering is achieved using the 2-D texture mapping based

Goneeal | lfo | imaging | Wi | Movie | Shices
Alpha Toal © Projartion: Blonding

— Parallal Add

Bls -

Save LUT

Open LUT

shear-warp algorithm described in the section titled “Inter-
active Volume Rendering by 2-D Texture Mapping.” The
algorithm requires a 128 MB main memory to run 2563
sized volumes. Unlike the original shear-warp algorithm,
this system shows no speed difference between parallel and
perspective projections. On an SGI OCTANE workstation
with 128 MB main memory and 4 MB texture memory, we
are able to volume render a 256 X 256 X 64 data set at a 7

Gonaral I imaging | Vis | Movie | Sieas

v Modan Add Operator
v Sabal Edge Datect =
Edi Oparator |

Dulete Operator |
Sawn Ghain_ |

Load Chan

_ Apply Operators |

w Primary Viewng Axis Only

FiG.5 Color images: Interactive volume visualization system (IVIE) rendering results of several confocal microscopy data sets, and two sam-

ple control screens.

226 Scanning Vol. 22, 3 (2000)

frames/s rate. The frame rate is reduced to 5 frames/s on
an SGI O2 workstation with 128 MB main memory and 1
MB texture memory. Such frame rates allow users to rotate
and zoom in/out interactively with full volume rendering
resolution. For an even better frame rate, IVIE also provides
an adaptive rendering option that automatically adjusts the
number of slices (2-D textures) to be used for rendering
when the object is in motion. Since loss of resolution dur-
ing motion is normally less noticeable, it is a very effec-
tive feature for smooth animation and motion.

Two image processing libraries are used in IVIE. The
first is a software toolkit we wrote using C++ for both 2-
D and 3-D image processing operations. The second is the
ImageVision library by SGI. Since ImageVision takes
advantages of some hardware features through OpenGL,
it is faster than our software implementations. On the other
hand, it is only available on SGI workstations, and would
need to be replaced by either a software library or some
hardware image processing chips if the system is ported to
a PC platform. For 256 X 256 x 64 volumes, the transfer
function computation without ImageVision takes from 6 to
170 s for each filter. It is about twice as fast if ImageVision
were used. Although the image processing computation
using ImageVision is very fast, the majority of the time for
the transfer function process is spent on building and load-
ing the 2-D texture objects rather than on the image pro-
cessing itself.

The front end of IVIE is a graphical user interface with
a rendering window and a control panel that includes a
number of control screens for controlling different system
functions, such as volume rendering, 2-D and 3-D image
processing, color and opacity map manipulation, trans-
parency adjustment, movie making, and slice-based oper-
ations. Some sample control screens and rendering images
generated by IVIE are shown in Figure 5.

Conclusions

An interactive volume visualization system, IVIE, for 3-
D microscopy images is described. Two new techniques are
employed in this system: interactive volume rendering by
2-D texture mapping and transfer function design using
image processing operations. They form the basis of an
interactive volume data exploration environment that is
particularly suitable for 3-D microscopy data sets. The
system is intentionally designed to avoid using advanced
graphics hardware features such as 3-D texture mapping.
Thus, it can be easily implemented on PC platforms and
other low-end workstations. Future work will be focused
on the performance enhancement of the image processing
computation and the PC implementation of the IVIE sys-
tem. Currently, the speed of the image processing opera-

tions in IVIE is not yet interactive. We would like to inves-
tigate new image processing solutions (possibly hardware
enhanced) to achieve truly interactive transfer function
design. Since the graphics accelerators on PCs often have
very large 2-D texture memory, we expect that the perfor-
mance of our volume rendering algorithm on PCs will be
even better.

References

Cabral B, Cam N, Foran J: Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware. In Proc.
1994 Symposium on Volume Visualization, 91-98, October
(1994)

Cameron GG, Undrill PE: Rendering volumetric medical images
data on a simd-architecture computer. In Proc. 3 Eurograph-
ics Workshop on Rendering, 135-145, May (1992)

Dunn K, Mayor S, Meyer J, Maxfield F: Applications of ratio fluo-
rescence microscopy in the study of cell physiology. FASEB J
8, 573-582 (1994)

Fang S, Biddlecome T, Tuceryan M: Image-based transfer function
design for data exploration in volume visualization. In Proc.
IEEE Visualization ‘98, 319-326, October (1998)

He T, Hong L, Kaufman A, Pfister H: Generation of transfer func-
tions with stochastic search techniques. In IEEE Visualization
96, 227-234, October (1996)

Kindlmann G, Durkin J: Semi-automatic generation of transfer func-
tions for direct volume rendering. In IEEE/ACM 1998 Sympo-
sium on Volume Visualization (1998)

Lacroute P, Levoy M: Fast volume rendering using a shear-warp fac-
torization of the viewing transformation. SIGGRAPH ’94,
451-458 (1994)

Levoy M: Display of surfaces from volume data. [EEE Computer
Graphics and Application, 8(3), 29-37, May (1988)

Levoy M: Efficient ray tracing of volume data. ACM Trans on Graph-
ics, 9(3), 245-261, July (1990)

Lorensen WE, Cline HE: Marching cubes: A high resolution 3D sur-
face construction algorithm. Computer Graphics, SIGGRAPH
’87, 21(4), 163-169, July 1987

Marks J, Andalman B, Beardsley PA, Freeman W, Gibson S, Hod-
gins J, Kang T, Mirtich B, Pfister H, Ruml W, Ryall K, Seims
J, Shieber S: Design galleries: A general approach to setting
parameters for computer graphics and animation. In SSIGGRAPH
"97, 389-400 (1997)

Parker S, Shirley P, Livnat Y, Hansen C, Sloan P: Interactive ray trac-
ing for isosurface rendering. In Proc. IEEE Visualization ’98,
233-238 (1998)

Perona P, Malik J: Scale-space and edge detection using anisotropic
diffusion. IEEE Trans Pattern Analysis and Machine Intelli-
gence, 12(7) 629-639 (1990)

Rosenfeld A, Kak A: Digital Picture Processing. Academic Press
(1982)

SGI Technical Publications. Open GL Volumizer Programmer’s
Guide. SGI (1998)

Shaw PJ: Comparison of wide-field/deconvolution and confocal
microscopy for 3D imaging. In Handbook of Biological Con-
focal Microscopy, 27 Edition, (1995) 373-387

Upson C, Keeler M: V-buffer: Visible volume rendering. Computer
Graphics, SIGGRAPH ’88, 22(4), 59-64, August (1988)

Westover L: Footprint evaluation for volume rendering. Computer
Graphics, SIGGRAPH 90, 24(4) 367-376, August (1990)

